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Project Summary 

Our research aims to develop computational models of inductive inference in higher-level human 
cognition. Work lias focused on two areas of cognition: learning about categories and their properties. 
and learning about relational structures - specifically, systems of causal and social relations. The 
modeling challenge is to explain how people are able to make strong inductive leaps -- or generalizations 
to novel unseen cases - that go far beyond the sparse, noisy, ambiguous data they observe during 
learning. Our research seeks to understand the computational basis of these everyday inductive leaps — to 
model them quantitatively, to explain in principled rational terms how they can be as successful as they 
are, and to build machines with the same kinds of common-sense inductive capacities. 

Traditional accounts of induction emphasize either the power of statistical learning, or the importance of 
strong constraints from structured domain knowledge, intuitive theories or Schemas. Our work is based on 
the premise that both components are necessary to explain the nature, use and acquisition of human 
knowledge. We have developed a theory-based Bayesian framework for modeling inductive learning and 
reasoning as statistical inferences over hierarchies of structured knowledge representations. This theory- 
based Bayesian framework is primarily and traditionally posed at Marr's level of computational theory. 
We have also begun to explore rational algorithmic or process-level accounts of human cognition, based 
on sensible ways of approximating intractable Bayesian computations on sparse data. 

Our theory-based Bayesian models have made several contributions. First, they have explained a broad 
range of phenomena with high quantitative accuracy, using a minimum of free parameters. Second, they 
have provided a rational framework for explaining how and why everyday induction works, in terms of 
approximations to optimal statistical inference in natural environments. Third, they have provided tools 
for elucidating people's implicit theories about the structure of the world. For the inductive inference 
tasks we study, people are able to make strong inferences from very limited data, and these inferences 
must depend on some form of prior knowledge. Our models provide ways of describing that prior 
knowledge and explaining how it too may be acquired from experience.  Finally, our models offer a two- 
way bridge to the state of the art in AI. They have led to improved algorithms for machine learning of 
category structures and their property distributions, causal networks, and the structure of social relations, 
thus bringing artificial intelligence systems closer to the capacities of human intelligence at the same time 
as they support a better understanding of human intelligence. 

Our work makes several contributions to Air Force research goals. By better characterizing human 
learning and inference in computational terms, our models can suggest ways to improve training and 
agent modeling for simulations. By developing more human-like algorithms for machine learning and 
reasoning, our work could lead to computer systems that can replace, supplement or extend the existing 
capacities of Air Force personnel. Finally, an extra payoff comes from pursuing these two goals together. 
By developing better machine-I earning and reasoning systems that operate on the same principles as 
human cognition does, we should be able to make human-machine interaction and collaboration more 
valuable and efficient. 



1 General technical approach 

Theory-based Bayesian models of induction focus on three critical questions: what is the content of 
people's intuitive theories of the world, how are they used to support rapid learning, and how can they 
themselves be learned? The learner evaluates hypotheses h about some aspect of the world - the 
meaning of a word, the extension of a property or category, or the presence of a hidden cause - given 
observed data d and subject to the constraints of a background theory T. Hypotheses are scored by 
computing posterior probabilities via Bayes' rule: 

YdP(d\ht.T)P(h'\T)       ' (l) 

The likelihood P{d\h,T) measures how well each hypothesis predicts the data, while the prior probability 
P(h\T) expresses the plausibility of the hypothesis given the learner's background knowledge. Posterior 
probabilities P(h\x,T) are proportional to the product of these two terms, representing the learner's degree 
of belief in each hypothesis given both the constraints of the background theory 7* and the observed data 
d. Adopting this Bayesian framework is just the starting point for our cognitive models. The challenge 
comes in specifying hypothesis spaces and probability distributions that support Bayesian inference for a 
given task and domain. In theory-based Bayesian models, the domain theory plays this critical role. 

More formally, the domain theory T generates a space HT of candidate hypotheses, such as all possible 
meanings for a word, along with the priors P(h\T) and likelihoods P{d\h.T). Prior probabilities and 
likelihoods are thus not simply statistical records of the learner's previous observations. Rather, they are 
products of abstract systems of knowledge that go substantially beyond the learner's direct experience of 
the world, and can take qualitatively different forms in different domains. 

It is often crucial to distinguish multiple levels of knowledge in a theory. The base level of a theory is a 
structured probabilistic model that defines a probability distribution over possible observables -- entities. 
properties, variables, events. This model is typically built on some kind of graph structure capturing 
relations between observables. such as a taxonomic hierarchy or a causal network, together with a set of 
numerical parameters. The graph structure determines qualitative aspects of the probabilistic model: the 
numerical parameters determine more fine-grained quantitative details. At a higher level of knowledge 
are abstract principles that generate the class of structured models a learner may consider, such as the 
specification that a given domain is organized taxonomically or causally. Inference at all levels of this 
theory hierarchy - using theories to infer unobserved aspects of the data, learning structured models given 
the abstract domain principles of a theory, and learning the abstract domain principles themselves ~ can 
be carried out in a unified and tractable way with hierarchical Bayesian models. 

The following sections describe more specific theory-based Bayesian models for the two areas of focus in 
this project, category learning and learning causal and social relations. Numbered references refer to 
publications cited at the end of this report. 

2 Learning categories 

Much of human knowledge is organized into categories, which summarize the properties of objects and 
the ways in which we act towards them. For example, in a military setting a person might need to 
discriminate many different categories of vehicles, knowing the capabilities of each, and know how to 
identify whether those vehicles are likely to be friends or foes. How are categories structured, and how 
are they learned? We have developed theory-based Bayesian models to answer these questions using 



several techniques that build on - and contribute to- state-of-the-art research in machine learning, 
statistics, and artificial intelligence. Nonparametric Bayesian methods allow us to build models of 
categorization whose complexity does not have to be fixed in advance. The number of categories, along 
with the statistical features of each category, can be discovered automatically from observations. 
Inference can be performed using Monte Carlo methods that grow the effective number of categories just 
as the data require, naturally embodying a version of Occam's razor that balances representational 
simplicity and fit to the data in inferring the appropriate number of categories. Hierarchical Bayesian 
methods allow us to express higher-level abstract constraints on the learner's more concrete hypotheses in 
forms that can themselves be learned from data. Probabilistic models defined over rule-based 
representations can capture concepts whose structure is defined symbolically. Priors on rule-based 
concepts can be defined using probabilistic grammars - again embodying a natural version of Occam's 
razor in a way that reflects the intuitions of "minimum description length" (MDL) learning, but embedded 
in a probabilistic framework that gives a principled basis for people or machines should express 
uncertainty about category membership. 

We have used these methods separately and in combination to model a number of central phenomena in 
human category learning, and to build more human-like machine learning systems. With Charles Kemp, 
Amy Perfors, and Mike Frank, we have built hierarchical nonparametric models for how children learn to 
learn categories and word meanings (1. 25). and syntactic constructions (8, 23).   These models not only 
learn new concepts from few examples, but also learn what abstract properties "good" concepts have in 
common which allows them to learn how to learn new concepts more quickly.   With Mike Frank and 
Noah Goodman, we have built hierarchical Bayesian models for learning word meanings that jointly infer 
lexical concepts and speakers' referential intentions in particular communicative acts, which substantially 
improves accuracy of learned meanings (5, 17). 

We have built hierarchical nonparametric models for discovering multiple cross-cutting ways to 
categorize a given domain (13) - for instance, learning that animals are best grouped taxonomically (into 
mammals, fish, birds, reptiles, etc.) in order to explain their anatomical and physiological features, but 
can also be grouped according to ecological niches (e.g., land, air. sea predators or prey) in order to 
explain their behavioral features. 

With Noah Goodman, Tom Griffiths and Jacob Feldman, we have built grammar-based models for 
learning rule-based concepts (2, 30). We have begun to explore how these grammar-based approaches 
can be applied to learning compositional aspects of semantics, with Steve Piantadosi (20), and to learning 
structured object concepts, with Virginia Savova and Frank Jakel (22, 26). 

With Charles Kemp, we have built hierarchical Bayesian models on top of grammar-based representations 
for learning the abstract structural form of a domain (3). Different grammars can capture the tree- 
structure of taxonomic categories in biology, the linear structure of political identities in voting systems, 
or the low-dimensional spatial structure of perceptual categories for faces or colors. With Kemp and also 
Pat Shafto we have shown how probabilistic models with appropriate abstract structural forms can capture 
people's property induction judgments in a range of domains (4, 29). 

Finally, building on the work above and also inspired by work of Tom Griffiths and colleagues on 
nonparametric models of human concept learning, we have built nonparametric models for machine 
concept learning that can learn more complex concepts more accurately than previous Bayesian 
classification systems (15). 

Learning causal and social relations 



Categories are fundamental to how we organize our knowledge of the world, but they do not exhaust our 
knowledge. People also deploy much richer systems of knowledge - what cognitive scientists have called 
intuitive theories.   To explain how people learn and use intuitive theories, we have taken the technical 
methods described above for modeling category learning and extended them to work with relational 
representations: representations using predicate logic that describe how entities of one or more types 
relate to each other. Our focus has been on systems of causal relations and social relations, and on the 
abstract knowledge that constrains how these systems can be induced from sparse data. 

With Tom Griffiths we have shown how to define Bayesian models over predicate logic representations 
to capture intuitive theories of simple causal systems, and the constraints these place on learning specific 
causal relations (6, 27. 28).   With Charles Kemp, Noah Goodman. Yarden Katz and Tomer Ullman we 
have shown how to learn abstract knowledge of causality - including abstract theories of specific causal 
domains as well as more general knowledge of how causality works across domains (9, 10, 21) - by 
combining both hierarchical Bayes and nonparametric Bayes methods with logical representations.  With 
Liz Bonawitz we have tested a simple version of this approach in experiments with pre-school age 
children, showing that they can learn appropriate laws and abstract categories for the theory of magnet 
poles in ways that mirror the historical development of these concepts in science (12). 

With Noah Goodman we have modeled how people can ground abstract causal knowledge in perception, 
learning how to carve up the continuous spatiotemporal flux of perceptual experience into discrete events 
at the same time as they learn how these events are related causally (16). Specifically, we have shown 
empirically that human learning of perceptually grounded causal models is best explained, as in our 
model, in terms of a joint Bayesian inference about both the variable structure and the causal structure 
relating those variables. With David Wingate and Dan Roy, we have shown how the same ideas can 
serve as the basis for more sophisticated nonparametric latent-event models of dynamical systems (24). 

We have applied analogous methods for hierarchical and nonparametric Bayesian learning over predicate 
logic representations to model how people learn a wide range of social relations, and most interesting!). 
how they can learn the abstract form of a relational system that supports generalization about the social 
relations of new agents from minimal observations (7. 18, 19). For instance, we have modeled how 
people can learn that a particular social system follows a tree structure, or a ring structure, or a clique 
structure, and use that knowledge to infer which social relations a new actor will engage in after seeing 
just a single interaction between that actor and one other person in the network. 

Finally, with Dan Roy. we have developed new nonparametric Bayesian machine learning methods for 
relational data; our methods infer a hierarchical tree structure of latent groups that best explains a whole 
set of social relations based on possibly different tree-consistent partitions of the objects for each relation 
(14). Roy and colleagues (chiefly Yee Whye Teh) have extended these approaches to a novel class of 
nonparametric models known as the Mondrian Process. 
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